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Summary 

Two new methods of calculation of memory functions, go- 

verning the exciton propagation, in linear finite chains and 

consequent calculation of the quantum yield of the exciton 

transfer, observable in e.g. experiments on monomer and exci- 

mer luminiscence, are reported. Illustrative numerical results 

are shown to discuss the effect of inhomogeinities, boundaries 

and relative magnitudes of relevant parameters on the result. 

Introduction 

The investigation of the excitation transfer is of great 

importance in diverse fields of study and much theoretical work 

has already been done in this area ( KENKRE 1981). 

The aim of this paper is the study of the exciton propa- 

gation, using our new general methods for finite systems, along 

the linear finite chain. We are interested in the time develop- 

ment of the occupation probabilities Pm(t) of the sites m 

They give us, at the end, the observable quantity, in such ex- 

periments as sensitized luminiscence or surface quenching, the 

quantum yield Qg of a single trap at a guest place g 

Once the exciton is created at t=0 with the probability 

distribution Pm(0)=Pom, the further time development Pm(t) is 

given by the generalized master equation (GHE} 
t 

@Pm ~ ;Wmn(t_t- ) p (s ds (I) 
dt n 

nO 

It results from the universal Liouville equation for the densi- 

ty matrix ( ZWANZIG 1964) taking in to account that P (t) are 
m 
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given by diagonal elements of the density matrix~ The kernels 

of the integral equation (I) are so called memory functions 

w (t) , the crucial quantities in non-Markoffian treatments 
mn 

of the exciton transport. 

Memory functions and a propagator for finite systems 

For finite rigid systems without interaction with a bath, 

we arrived at the following matrix equation for the memory fun- 

ctions in a Fourier picture 

i M(z) w(z) = z M(z) - I (2) 

where the matrix M is given as 

Mmn(Z) : ~ (z- Eab )-I <ml~@In~nlb>~Im~ (3) 
ab 

Here { Im>} are Wannier - like states localized on sites, 

{la>} are eigenstates of the hamiltonian H and 

Eab are differences of the eigenenergies E a and E b- 

As a function of time 

i Mmn(t) = i~ml e -iHt In~l 2 (4) 

describes the time evolution of the occupation probability 

Pm(t) , if the excitation initially resides at the site n . It 

means that i Mmn(t) is the propagator. 

The frequencies of the memory functions are given as so- 

lutions of the equation 

det M(z) = O. (5) 

As an illustration, we used this formalism for a derivation of 

the MF~ for the open chain of three molecules with the model 

hamiltonian 

H : E ~ (6) 

J 

Here E is the difference in the exciton energy in absence 
o 

of the intersite interaction between sites 2 and I or 3; J de- 

signates the transfer integral and is nonzero only between the 

neighbouring sites. Using (3) and (5), the final form of the 

independent MF~ is 

w12(t) : 2 j2 cos(tEl) ; EI:(Eo 2 + 2j2)1/2 
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and 

w13(t) = 4 j4 EI-2 sin2(tE1/2) . (7) 

This example shows us the following typical features: 

I. the frequencies of memory functions w (t) do not general- 
mn 

ly coincide with eigenvalues of the hamiltonian or their diffe- 

rencies, though the latter do it in P (t) in (I). 
m 

2. in case of dynamical uncoupling of some molecule in a chain 

( IEol >> J in our case), the MF{ connected with this site 

vanish in sence of distribution. 

with 

Direct calculation of memory functions 

To avoid lengthy numerical calculations of determinants 

(5) for large matrices with an indefiniteness in the condition 

(5) for the number of poles we suggested, for special cases , 

another method based on a direct inversion of the superoperator. 

Let 

S(I,K) : Hilkl ~ i2k2 - Hk2i2 ~ilkl ' (8) 

where I denotes a pair (ili 2) for ii# i 2 . We can choose 

the corespondence between (iii2) and I in a such way, that the 

whole matrix may be written in the block diagonal form 

[:01 S = S x (9) 
I- p 

In absence of external magnetic field, the elements of the ma- 

trix may be chosen real, i.e. we get real eigenvectors. 

The final form of the MFs in the time domain reads 

Wmn(t) = ~-~ Aamn coS(fat) (I0) 
a 

A a = -2 ~ (H . 4 . 

mn IK mll ml2 - Hi2m ~mi I) <IIa> 

<alKb(Hkln ~k2n - Hnk 2 ~nkl) " (11) 

{f } are eigenvalues and{la>} eigenvectors of the matrix S . a p 
Several important results can be revealed from our cal - 

culations: 
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a) the frequencies of MF~ f can neither be generally deduced a 

from Eab by any simple algebraic manipulation, nor they are gi- 

ven by overlap (hopping) integrals only. 

b) as long as the chain has a spatial symmetry (inversion), 

some of the frequencies f get zero, i.e. w (t) contain a 
a mn 

constant term. 

c) as long as a molecular atomic level on an acceptor (donor) 

differs appreciably from those in the host chain, the indivi - 

dual components of the memory functions w (t) connecting ei- 
mn 

ther this acceptor with its surroundings or two host sites se- 

parated by the acceptor turn to zero due to one of the follow- 

ing reasons: 

I. A a tends to zero, uniform convergence. 
mn 

II. f tends to infinite, but A a remain finite, disappearence 
a mn 

as a distribution. 

III. several f tend to zero, but the corresponding sum of A a 
a mn 

turning to zero, nonuniform convergence. The memory functions 

in host part of the chain turn to those for an isolated part of 

the chain ( dynamical splitting off the impurity sites). 

These physical consequences may be deduced from this: 

I) The knowledge of the energy spectrum is generally of no use 

for modelling the memory functions. 

2) The Fourier or Laplace transform turn GME to an algebraic 

equation. Since the transform of a constant is singular as long 

as the Fourier frequency ( Laplace parameter) gets zero, sym- 

metry of the chain might be of a high importance for the exci- 

ton transfer. Similar effects cannot be derived from the Pauli 

equation in any finite order in hopping integrals. 

3) Assuming from now on that the effect of the exciton-phonon 

coupling (bath) reduces to an exponentially damped prefactor 
-Ft 

e of our memory functions, the dynamical splitting off the 

impurity means a big delay of the exciton before being trapped 

at an acceptor ( or released at a donor). It means that dedu - 

cing the diffusion constant (mobility) from the difference be- 

tween the momenta of a creation of the exciton at a donor and 

its detection at an acceptor and ignoring this delay can lead 

to severe underestimations of the diffusivity in the host part 

of the chain. One should mention that this splitting off is 
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observed for IE~>J which is easily satisfied in realistic si- 

tuations. 
Wl 5 (t) /j2 

0 F ^ ^ ^ _ . ^  . . . . . .  

- . xlVVWVVWVW \ 
1 0 - 4  ' 

~-ioo~ 

O. 

- - 1  . 

2 . ~ - -  E=0 -- 

0. 40. txJ 80. 

2. 

0. 

--2. 

2. 

I .  

0 

w45 (t)/j2 

-2. E=_I00J 
g 

E=-J g 

y "w 'vv Y 
E=O 

v' vv vv 'v I 
0. 40. txJ 80. 

) 

Fig. I. The coherent memory functions w15(t) and w45(t) for 

a chain of five molecules. All site energies are equal to zero, 

E is the energy of the fifth molecule 
g 

Quantum yield of a single trap 

To treat correctly results of the experimental investiga- 

tion we have to add (phenomenologicaly) to (I) decay terms 

Pm/tH and Pg/tg with radiative life times t H and tg. 

The experimental observable quantity, the quantum yield 

of a single trap at a site g 

= _ ~Pg(t) dt / tg (12) Qg 

is then given by 0 

Qg = ( I + (tH/tg-1) Kgg/t H )-I (i/till ~i Kgl Pol (13) 

where 

�9 ~14) K = K(s,F) = (1-iFM(i(s+F))) -I iM(i(s+F)) , s=I/t'" O ,  n 
The use of periodic boundary conditions in a calculation me- 

mory functions leads to a pronounced underestimation of the 

quantum yield of a guest appended at one end of the linear 

chain ( surface quenching) just in an area of low incoherence 

(F tends to zero). Incorporation of exact energies in the exact 

propagator iM leads to drastical changes in Qg for high t H 
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Fig. 2. The quantum yield of a guest appended at one end of 

a chain with four host molecules. All host energies equal to 

zero. a) periodic, b) natural boundary conditions, Eg=0; c) na- 

tural boundary conditions, E =-5J; d) natural boundary condi - 
g 

tions, E =-1000J g 

and low F. For larger differences between the energies of hosts 

and guest molecules, the changes in Qg with F appear for lar- 

ger F 
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